Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Small ; : e2400230, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501752

ABSTRACT

A series of 15 dyes based on the 2-phenylnaphtho[2,3-d]thiazole-4,9-dione scaffold and 1 compound based on the 2,3-diphenyl-1,2,3,4-tetrahydrobenzo[g]quinoxaline-5,10-dione scaffold are studied as photoinitiators. These compounds are used in two- and three-component high-performance photoinitiating systems for the free radical polymerization of trimethylolpropane triacrylate (TMPTA) and polyethylene glycol diacrylate (PEGDA) under sunlight. Remarkably, the conversion of TMPTA can reach ≈60% within 20 s, while PEGDA attains a 96% conversion within 90 s. To delve into the intricate chemical mechanisms governing the polymerization, an array of analytical techniques is employed. Specifically, UV-vis absorption and fluorescence spectroscopy, steady-state photolysis, stability experiments, fluorescence quenching experiments, cyclic voltammetry, and electron spin resonance spin trapping (ESR-ST) experiments, collectively contribute to a comprehensive understanding of the photochemical mechanisms. Photoinitiation capacities of these systems are determined using real-time Fourier transformed infrared spectroscopy (RT-FTIR). Of particular interest is the revelation that, owing to the superior initiation ability of these dyes, high-resolution 3D patterns can be manufactured by direct laser write (DLW) technology and 3D printing. This underscores the efficient initiation of free radical polymerization processes by the newly developed dyes under both artificial and natural light sources, presenting an avenue for energy-saving, and environmentally friendly polymerization conditions.

2.
Small ; : e2400234, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426650

ABSTRACT

Investigations concerning the glyoxylate moiety as a photocleavable functional group for visible light photoinitiators, particularly in the initiation of free radical photopolymerization remain limited. This study introduces nine innovative carbazole-based ethyl glyoxylate derivatives (CEGs), which are synthesized and found to exhibit excellent photoinitiation abilities as monocomponent photoinitiating systems. Notably, these structures demonstrate robust absorption in the near-UV/visible range, surpassing the commercial photoinitiators. Moreover, the newly developed glyoxylate derivatives show higher acrylate function conversions compared to a benchmark photoinitiator (MBF) in free radical photopolymerization. Elucidation of the photoinitiation mechanism of CEGs is achieved through a comprehensive analysis involving the decarboxylation reaction and electron spin resonance spin trapping. Furthermore, their practical utility is confirmed during direct laser writing and 3D printing processes, enabling the successful fabrication of 3D printed objects. This study introduces pioneering concepts and effective strategies in the molecular design of novel photoinitiators, showcasing their potential for highly advantageous applications in 3D printing.

3.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762321

ABSTRACT

This paper explores the photochemical synthesis of noble metal nanoparticles, specifically gold (Au) and silver (Ag) nanoparticles, using a one-component photoinitiator system. The synthesis process involves visible light irradiation at a wavelength of 419 nm and an intensity of 250 mW/cm2. The radical-generating capabilities of the photoinitiators were evaluated using electron spin resonance (ESR) spectroscopy. The main objective of this study was to investigate how the concentration of metal salts influences the size and distribution of the nanoparticles. Proposed mechanisms for the photochemical formation of nanoparticles through photoinitiated radicals were validated using cyclic voltammetry. The results showed that the concentration of AgNO3 significantly impacted the size of silver nanoparticles, with diameters ranging from 1 to 5 nm at 1 wt% and 3 wt% concentrations, while increasing the concentration to 5 wt% led to an increase in the diameter of silver nanoparticles to 16 nm. When HAuCl4 was used instead of AgNO3, it was found that the average diameters of gold nanoparticles synthesized using both photoinitiators at different concentrations ranged between 1 and 4 nm. The findings suggest that variations in HAuCl4 concentration have minimal impact on the size of gold nanoparticles. The photoproduction of AuNPs was shown to be thermodynamically favorable, with the reduction of HAuCl4 to Au0 having ∆G values of approximately -3.51 and -2.96 eV for photoinitiators A and B, respectively. Furthermore, the photoreduction of Ag+1 to Ag0 was demonstrated to be thermodynamically feasible, with ∆G values of approximately -3.459 and -2.91 eV for photoinitiators A and B, respectively, confirming the effectiveness of the new photoinitiators on the production of nanoparticles. The synthesis of nanoparticles was monitored using UV-vis absorption spectroscopy, and their sizes were determined through particle size analysis of transmission electron microscopy (TEM) images.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Silver/chemistry , Photochemical Processes , Sodium Chloride , Sodium Chloride, Dietary , Particle Size
4.
Polymers (Basel) ; 15(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679223

ABSTRACT

Currently, increasing attention has been focused on light-emitting diodes (LEDs)-induced photopolymerization. The common LEDs (e.g., LED at 365 nm and LED at 405 nm) possess narrow emission bands. Due to their light absorption properties, most commercial photoinitiators are sensitive to UV light and cannot be optimally activated under visible LED irradiation. Although many photoinitiators have been designed for LED-induced free radical polymerization and cationic polymerization, there is still the issue of the mating between photoinitiators and LEDs. Therefore, the development of novel photoinitiators, which could be applied under LED irradiation, is significant. Many photoinitiating systems have been reported in the past decade. In this review, some recently developed photoinitiators used in LED-induced photopolymerization, mainly in the past 5 years, are summarized and categorized as Type Ⅰ photoinitiators, Type Ⅱ photoinitiators, and dye-based photoinitiating systems. In addition, their light absorption properties and photoinitiation efficiencies are discussed.

5.
Macromol Rapid Commun ; 43(19): e2200314, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35526219

ABSTRACT

In both organic and polymer synthesis, photochemistry of charge transfer complexes (CTCs) is considered as a powerful approach to expand visible-light-driven radical chemistry reaction. One reports herein on the development of a class of useful CTCs using pyridinium salts as efficient electron acceptors (combined with N, N, 3,5-tetramethylaniline, TMA) to achieve a multiwavelength (375-560 nm) metal-free LED photopolymerization process under mild conditions (open to air, without monomer purification and inhibitor removal). The UV-vis absorption spectra and molecular modeling simultaneously verify its potential blue-green absorbing wavelength range. Also, their good thermal initiation behavior at relatively low temperatures makes it easier to achieve thick samples and/or polymerization in the shadow region in practice. More importantly, with excellent photoinitiating capability, the formulation is successfully applied to direct laser write (DLW) and high-resolution 3D printing, yielding a series of objects with well-defined structures, such as letters, ring, solid squares, and chess pieces. These new pyridinium salt acceptors further extend the applicability to visible photopolymerizable resins and additive-containing formulations for efficient surface and deep curing.


Subject(s)
Polymers , Salts , Photochemistry , Polymerization , Polymers/chemistry , Printing, Three-Dimensional , Salts/chemistry
6.
Angew Chem Int Ed Engl ; 60(31): 17037-17044, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-33955632

ABSTRACT

In the development of 3D printing fuels, there is a need for new photoinitiating systems working under mild conditions and/or leading to polymers with new and/or enhanced properties. In this context, we introduce herein N-heterocyclic carbene-borane complexes as reagents for a new type of photo-click reaction, the borane-(meth)acrylate click reaction. Remarkably, the higher bond number of boranes relative to thiols induced an increase of the network density associated with faster polymerization kinetics. Solid-state NMR evidenced the strong participation of the boron centers on the network properties, while DMA and AFM showed that the materials exhibit improved mechanical properties, as well as reduced solvent swelling.

7.
Food Chem ; 359: 129949, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-33957330

ABSTRACT

l-Tryptophan (l-Trp) is an amino acid important in nutrition, and mainly provided by food supplements. However, it is known to be unstable under light irradiation, which is an issue for the nutrition and feed industry. In the present study, the photostability of l-Trp was studied in acidic aqueous solutions under air and under an inert atmosphere, N2. The photodegradation was followed using UV-visible and fluorescence spectroscopy after photolysis. Moreover, molecular orbitals and bond dissociation energies calculations, and electron spin resonance spectroscopy were performed. From all these results, a photodegradation occurring through a free radical pathway was suggested. Interestingly, several antioxidants were tested to improve the photostability of l-Trp, especially during irradiation under air, since the l-Trp was evidenced to be much less stable under air than under N2. The results showed that sodium benzoate or EDTA were not efficient, but antioxidants such as chlorogenic acid, ascorbic acid or potassium sorbate improved significantly the photostability of l-Trp in acidic solutions.


Subject(s)
Antioxidants/chemistry , Atmosphere , Photolysis , Tryptophan/chemistry , Ascorbic Acid/chemistry , Electron Spin Resonance Spectroscopy , Free Radicals , Solutions , Water
8.
Chemphyschem ; 21(20): 2301-2310, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32767640

ABSTRACT

The photophysical properties and the photoinitiating reactivity of a ditopic alkoxynitrostilbene were compared to those of its single branch chromophore used as a reference. Whereas a trivial additive effect is observed when considering the one- and two-photon absorption properties, a clear and very significant amplification has been highlighted for the photoreactivity of this free radical photoinitiator which was used as a hydrogen abstractor in presence of an aliphatic amine co-reactant. We indeed demonstrate that the proximity of two nitroaromatics moieties within the same molecular architecture gives rise to an original cycling mechanism based on a stepwise photo triggering of each photoredox center followed by a subsequent regenerative process. The combination of a high two-photon absorption cross-section (δ780nm ≈330 GM) with a strong enhancement in photoreactivity makes this nitrostilbene bichromophore a very suitable candidate for two-photon polymerization applications.

9.
Polymers (Basel) ; 12(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580350

ABSTRACT

In this article, different substituents (benzoyl, acetyl, styryl) are introduced onto the carbazole scaffold to obtain 8 novel carbazole derivatives. Interestingly, a benzoyl substituent, connected to a carbazole group, could form a benzophenone moiety, which composes a monocomponent Type II benzophenone-carbazole photoinitiator (PI). The synergetic effect of the benzophenone moiety and the amine in the carbazole moiety is expected to produce high performance photoinitiating systems (PISs) for the free radical photopolymerization (FRP). For different substituents, clear effects on the light absorption properties are demonstrated using UV-Visible absorption spectroscopy. Benzophenone-carbazole PIs can initiate the FRP of acrylates alone (monocomponent Type II photoinitiator behavior). In addition, fast polymerization rates and high function conversions of acrylate are observed when an amine and/or an iodonium salt are added in systems. Benzophenone-carbazole PIs have good efficiencies in cationic photopolymerization (CP) upon LED @ 365 nm irradiation in the presence of iodonium salt. In contrast, other PIs without synergetic effect demonstrate unsatisfied photopolymerization profiles in the same conditions. The best PIS identified for the free radical photopolymerization were used in three-dimensional (3D) printing. Steady state photolysis and fluorescence quenching experiments were carried out to investigate the reactivity and the photochemistry and photophysical properties of PIs. The free radicals, generated from the studied PISs, are detected by the electron spin resonance - spin trapping technique. The proposed chemical mechanisms are provided and the structure/reactivity/efficiency relationships are also discussed. All the results showed that the benzophenone-carbazole PIs have a good application potential, and this work provides a rational design route for PI molecules. Remarkably, BPC2-BPC4, C6, C8 were never synthetized before; therefore, 5 of the 8 compounds are completely new.

10.
ACS Appl Mater Interfaces ; 12(27): 30779-30786, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32515576

ABSTRACT

In this paper, we demonstrate the possibility of generating arbitrary polymer microstructures covalently linked to a first polymer layer by laser direct writing. At the molecular scale, the process relies on nitroxide-mediated photopolymerization triggered by a light-sensitive alkoxyamine. In addition to the proof of concept and examples of achievable structures, including multichemistry patterns and 3D structures, this paper aims at investigating the physicochemical phenomena involved under such conditions. In particular, the parameters influencing the repolymerization process are considered, and special attention is paid to the study of the impact of oxygen on the spatial control of the polymerization. Such a work opens many possibilities toward the fabrication of on-demand high-resolution (multi)functional polymer micro and nanostructures.

11.
Org Lett ; 22(11): 4404-4407, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32434333

ABSTRACT

We report herein a practically simple visible-light photocatalytic approach for the synthesis of a large variety of phosphate esters through the combination of N-alkoxypyridinium salts and phosphites under mild conditions. The scope of the reaction is broad and the protocol was successfully applied to the synthesis of biologically relevant structures. Quantum yield measurements, as well as EPR experiments, allowed the suggestion of a reasonable reaction mechanism.

12.
Molecules ; 25(7)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260383

ABSTRACT

Carbazole structures are of high interest in photopolymerization due to their enhanced light absorption properties in the near-UV or even visible ranges. Therefore, type I photoinitiators combining the carbazole chromophore to the well-established phosphine-oxides were proposed and studied in this article. The aim of this article was to propose type I photoinitiators that can be more reactive than benchmark phosphine oxides, which are among the more reactive type I photoinitiators for a UV or near-UV light emitting diodes (LED) irradiation. Two molecules were synthesized and their UV-visible light absorption properties as well as the quantum yields of photolysis and photopolymerization performances were measured. Remarkably, the associated absorption was enhanced in the 350-410 nm range compared to benchmark phosphine oxides, and one compound was found to be more reactive in photopolymerization than the commercial photoinitiator TPO-L for an irradiation at 395 nm.


Subject(s)
Oxides/chemical synthesis , Phosphines/chemistry , Molecular Structure , Oxides/chemistry , Photochemical Processes , Polymerization , Quantum Theory , Ultraviolet Rays
13.
Macromol Rapid Commun ; 41(6): e1900644, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32022349

ABSTRACT

In a significant breakthrough from classical molecular (i.e., nonpolymeric) iodonium salts in light-induced photochemistry, the synthesis and use of new safer polymeric iodonium salts are reported here. They are shown to be involved in charge transfer complexes (CTCs) while in interaction with a safe amino acid derivative (N-phenylglycine). Also, this study demonstrates i) the formation of CTCs between the iodonium (acceptor) and an aryl/alkyl amine (donor) through UV-vis measurements of the monomer, ii) the formation of radicals in electron spin resonance spin trapping experiments when the CTCs are irradiated by visible light (405 nm), and iii) their efficiency as a photoinitiator to polymerize three different acrylic monomers under LED irradiation at 405 nm under air and their application to 3D resolved laser writing of thick samples (3 mm). High reactivity for polymeric iodonium salts comparable with molecular ones is exhibited with the advantage of potential lower migration. To the best of the authors' knowledge, this is the first reported instance of polymeric iodonium salts acting as polymerization initiators.


Subject(s)
Free Radicals/chemistry , Iodine Compounds/chemistry , Polymerization/radiation effects , Polymers/chemistry , Salts/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Light , Photochemical Processes , Polyethylene Glycols/chemistry , Polymers/chemical synthesis , Polymethacrylic Acids/chemistry , Polystyrenes/chemistry
14.
J Agric Food Chem ; 67(43): 12061-12071, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31588743

ABSTRACT

Ascorbic acid is widely used in the food industry as a source of vitamin C or as antioxidant. However, it degrades quickly in beverages at acidic pH and can accelerate the degradation of anthocyanins, natural dyes used in beverages, leading to a loss of color. In this work, we investigated the possibility to replace ascorbic acid by ascorbic acid derivatives to prevent its degradation effect on anthocyanins from natural extracts (black carrot, grape juice, and purple sweet potato). For this, the thermal and photolytic stabilities under air and under N2 of ascorbic acid (as reference) and of some ascorbic acid derivatives (3-O-ethyl-l-ascorbic acid, 2-O-α-d-glucopyranosyl-l-ascorbic acid, l-ascorbic acid 2-phosphate sesquimagnesium salt hydrate, l-ascorbyl 2,6-dibutyrate, glyceryl ascorbate, (+)-5,6-O-isopropylidene-l-ascorbic acid), soluble in aqueous model beverages, were studied alone and in the presence of anthocyanins from the natural extracts in citrate buffer at pH 3. The stability was followed by UV-visible spectrometry. To extend the investigation, some properties of the ascorbic acid derivatives (pKa, oxidation potential, bond dissociation energy, ionization potential) were also determined. Moreover, the addition of chlorogenic acid was examined to further stabilize the mixture of anthocyanins with 2-O-α-d-glucopyranosyl-l-ascorbic acid, a promising ascorbic acid derivative.


Subject(s)
Anthocyanins/analysis , Ascorbic Acid/analogs & derivatives , Beverages/analysis , Food Additives/analysis , Plant Extracts/analysis , Ascorbic Acid/analysis , Color , Daucus carota/chemistry , Ipomoea batatas/chemistry , Vitis/chemistry
15.
Phys Chem Chem Phys ; 21(31): 17036-17046, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31355381

ABSTRACT

Although N-heterocyclic carbenes (NHCs) have brought profound changes in catalytic organic synthesis, their generation generally requires an inert atmosphere and harsh conditions. To overcome these limitations, an air-stable NHC photogenerator has been developed involving two mild components: 1,3-bis(mesityl)imidazolium tetraphenylborate (IMesH+BPh4-) and electronically excited isopropylthioxanthone (ITX). In this study, the photochemical mechanism is investigated via the accurate identification of the transient species and photoproducts. Electron transfer reaction between the excited triplet state of ITX and BPh4- is demonstrated as being the primary photochemical step. Nanosecond laser spectroscopy shows an efficient quenching and the formation of the expected ITX radical anion. The oxidized borane species is not observed, suggesting that this short-lived species could dissociate very rapidly to give the phenyl radical - successfully identified using electron paramagnetic resonance - and triphenylborane. As regards the final photoproducts, 1H and 13C NMR spectroscopies support the formation of the targeted NHC, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), suggesting the occurrence of a subsequent proton transfer reaction between ITX radical anion and imidazolium cation (IMesH+). Gas chromatography-mass spectrometry reveals three other products: biphenyl, isopropylthioxanthene and ITX. Their formation can be reconciled with a 2-step mechanism of photoinduced electron/proton transfer reactions. 11B NMR spectroscopy demonstrates that the main organoboron photoproduct is diphenylborinic acid formed by oxidation of BPh3. Due to its Lewis acidity, Ph2BOH can react with IMes to yield an NHC-boron adduct.

16.
Macromol Rapid Commun ; 40(16): e1900234, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31210405

ABSTRACT

The design and development of photoinitiating systems applicable to UV or even visible light delivered from light-emitting diodes (LEDs) has been attracting increasing attention due to their great potential applications in various fields. Compared to the strategy of synthesizing novel compounds, the exploration of existing chemicals with interesting photochemical/photophysical properties for their usage as photoinitiators is more appealing and easily commercialized. Nevertheless, a number of compounds such as monoamino-substituted anthraquinone derivatives, which are intensively investigated for their photophysical and photochemical properties, have seldom been studied for their roles as photoinitiators under LED irradiation. Herein, three monoamino-substituted anthraquinone derivatives, that is, 1-aminoanthraquinone, 1-(methylamino)anthraquinone and 1-(benzamido)anthraquinone, are studied for their potential as photoinitiators. The photoinitiation mechanism of these monoamino-substituted anthraquinone derivatives, when combined with iodonium salt, is first clarified using computational quantum chemistry, fluorescence, steady-state photolysis, and electron spin resonance spin-trapping techniques. Then, their photoinitiation ability for the cationic photopolymerization of epoxide and divinyl ether monomers is also investigated.


Subject(s)
Anthraquinones/chemistry , Light , Anthraquinones/chemical synthesis , Cations/chemical synthesis , Cations/chemistry , Molecular Structure , Photochemical Processes , Polymerization
17.
Chem Commun (Camb) ; 55(44): 6233-6236, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31086884

ABSTRACT

We present herein the properties of a highly reactive type I photoinitiator with significant 2PA cross-sections (δ720nm ∼ 90 GM). We demonstrate that this new type of photocleavable system exhibits very efficient two-photon polymerization abilities with performances amplified by more than two orders of magnitude with regards to those of a commercially available type I photoinitiator (Lucirin TPO-L) which is extensively employed for multiphoton 3D stereolithography.

18.
Chemistry ; 25(39): 9242-9252, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31021454

ABSTRACT

In the search of smarter routes to control the conditions of N-heterocyclic carbene (NHCs) formation, a two-component air-stable NHC photogenerating system is reported. It relies on the irradiation at 365 nm of a mixture of 2-isopropylthioxanthone (ITX) with 1,3-bis(mesityl)imidazoli(ni)um tetraphenylborate. The photoinduced liberation of NHC is evidenced by reaction with a mesitoyl radical to form an NHC-radical adduct detectable by electron spin resonance spectroscopy. The NHC yield can be determined by 1 H NMR spectroscopy through the formation of a soluble and stable NHC-carbodiimide adduct. To deprotonate the azolium salt and liberate the NHC, a mechanism is proposed in which the role of base is played by ITX radical anion formed in situ by a primary photoinduced electron-transfer reaction between electronically excited ITX (oxidant) and BPh4 - (reductant). An NHC yield as high as 70 % is achieved upon starting with a stoichiometric ratio of ITX and azolium salt. Three different photoNHC-mediated polymerizations are described: synthesis of polyurethane and polyester by organocatalyzed step-growth polymerization and ring-opening copolymerization, respectively, and generation of polynorbornene by ring-opening metathesis polymerization using an NHC-coordinated Ru catalyst formed in situ.

19.
J Agric Food Chem ; 67(19): 5647-5660, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31026157

ABSTRACT

Anthocyanins are natural dyes widely used in the food industry, but their chemical stability in beverages can be affected by the presence of additives. In the present paper, the interaction between anthocyanins and ascorbic acid (AA) is more particularly investigated. Ascorbic acid is an ubiquitous component in food products. In this study, the thermal stability at 43 °C and the photolysis stability in air and in an inert atmosphere (N2) of anthocyanins extracted from black carrot (BC), grape juice (GJ), and purple sweet potato (SP) were studied in the presence and absence of ascorbic acid (in citrate buffer at pH 3). Discriminating the main environmental factors (i.e., heat and light) affecting anthocyanin stability is a key point for better understanding the degradation pathways. The stability of the anthocyanins was followed by UV-vis spectrometry. Moreover, to understand the degradation mechanisms in both the presence and absence of ascorbic acid, various techniques such as fluorescence quenching, cyclic voltammetry, and electron-spin-resonance (ESR) spectroscopy were also used to furnish a full coherent picture of the chemical mechanisms associated with the anthocyanin degradation. In addition, molecular orbitals and bond-dissociation energies (BDE) were calculated to extend the investigation. Moreover, the effects of some supplementary stabilizers (chlorogenic acid, sinapic acid, tannic acid, fumaric acid, ß-carotene, isoquercitrin, myricitrin, green coffee bean extract, and rosemary extract) and sugars (sucrose, fructose, and glucose) on anthocyanins stability in the presence of ascorbic acid were examined.


Subject(s)
Anthocyanins/chemistry , Ascorbic Acid/chemistry , Daucus carota/chemistry , Fruit and Vegetable Juices/analysis , Ipomoea batatas/chemistry , Plant Extracts/chemistry , Vitis/chemistry , Color , Daucus carota/radiation effects , Fruit and Vegetable Juices/radiation effects , Hot Temperature , Ipomoea batatas/radiation effects , Light , Photochemical Processes , Photochemistry
20.
J Agric Food Chem ; 67(13): 3752-3760, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30852891

ABSTRACT

Citral, a lemon flavor molecule often used in the beverage and fragrance industry, is known to be unstable under light irradiation. Its deterioration is considered to be an important issue for the stabilization of lemon-flavored drinks. The aim of this study is to understand the degradation mechanisms of citral under light irradiation with the variation of three parameters: the solvent (citrate buffer solution at pH 3 vs ethanol), the atmosphere (air vs N2), and the concentration of citral. The photodegradation has been studied using UV-visible spectroscopy after photolysis, nuclear magnetic resonance spectrometry, and electron spin resonance spectroscopy. To extend the investigation, molecular orbitals and bond dissociation energies have also been calculated. They give an insight into the light absorption properties and the possible cleavage of citral molecular bonds. In addition, UV-light absorption and radical scavenging activities of two additives, potassium sorbate and ascorbic acid, have been studied for the inhibition of the citral photodecomposition by UV-light irradiation. Both theoretical and experimental results highlight a new degradation pathway involving free-radical intermediates in parallel to the already reported cyclization one, which could be prevented by the addition of stabilizers such as ascorbic acid or sorbate.


Subject(s)
Monoterpenes/chemistry , Acyclic Monoterpenes , Cyclization/radiation effects , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Hydrogen-Ion Concentration , Photolysis , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...